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PRELIMINARIES 

Introduction 

This work is the first of four related papers 

dealing with EM force theory, radiation, SR, 

and dark energy. In Part 1 the groundwork is 

laid for the remainder of the paper. The problem 

studied, which is viewed as the fundamental 

problem in EM theory, is to find the force that a 

charge,q1, moving at v1 exerts on a charge, q2, 

moving at v2, all as measured in an arbitrary 

fixed inertial frame of reference, IFR0. The 

resulting equation for the force, which is given 

by Equation (2.4.5),represents the entirety of 

EM force theory. This equation is intuitively 

developed in Part 2and then mathematically 

verified in Part 3. Experimental validations 

concerning the magnetic forces and emf‟s 

resulting from currents are provided in Parts 4 

and 5, respectively, as well as the derivation of 

Maxwell‟s formula for the velocity of light. In 

the equations given below, u=r/r. 

Several Classical Equations of Use in This 

Work 

(1.2.1)f=q1 q2u / (4πɛ0r
2
) (Coulomb‟s force law) 

(1.2.2)E = q u/ (4πɛ0r
2
)(Coulomb‟s electric field 

law) 

(1.2.3)f=qvxB(magnetic force law) 

(1.2.4)f = q [ E + vxB](Lorentz‟slaw)  

(1.2.5)B = [μ0/(4π)] q vx u /r
2
(Biot-Savart law) 

(1.2.6)c = √ 1/(ɛ0μ0)   (Maxwell‟s equation for c) 

(1.2.7)∮ E·dL = -d(∬ E ·dS)/dt(Faraday‟s law) 

The Implied Classical Solution to the 

Force Problem 

Consider Lorentz‟s law as given by (1.2.4), 

which is often viewed as the solution to the 

problem concerning the total EM force on a 

charge. If there is only a single charge, q1,which 

exerts a force on a single charge,q2, then E 

in(1.2.4) can be re-written by (1.2.2) and Bby 

(1.2.5). The resulting implied force, fIMP, is as 

follows: 

The Implied Force from the Classical Equations 

(1.3.1)fIMP=q1 q2u/(4πɛ0r
2
) + [(q1q2μ0/(4πr

2
)] v2  

x (v1x u) 

The Fundamental Problem of EM Force 

Theory 

In practice, magnetic and electromotive force 

experiments generally involve one or more 

currents. This is due to the fact that the small 

interactive force between two individual moving 

charges is hard to measure. As a consequence, 

reverse engineering is used to find the solution 

to what is arguably the fundamental problem, 

which is as follows: 

The Fundamental Problem of EM Force Theory 

Find the force that a moving charge q1 exerts on 

moving a charge q2 . 
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Solution Requirements 

Consider any arbitrary fixed inertial frame of 

reference, IFR0, and two charges, q1 and q2. At 
time t assume the position histories of these two 

charges are known for all time ≤t, or at least for 

the set of times that are needed to solve the 
problem. The known variables are therefore q1, 

q2,the positions of these charges over time ≤t, 

and any functions of these variables. Based on 
this definition, velocities are known variables, 

but currents are not.  It is argued that any 

proposed solution for the force, f, to the 

fundamental problem should be confined to 
these known variables, and that it should at least 

satisfy the following four requirements: 

Solution Requirements  

 f should be independent of the user‟s 

fixedIFR0. 

 f should predict Coulomb‟s force law when 

v1=v2=constant. 

 f should explain at least one magnetic 

experiment. 

 f should explain at least one emf experiment. 

By way of explanation, not satisfying (a) makes 

f non-unique, and not satisfying (b) for all 

v1makes it clearly wrong. Finally, not satisfying 

(c) and (d) makes fa speculation.  

It is noted that the dependence of fIMP on IFR0 

indicates it does not satisfy requirements (a) and 

(b), and there is also a problem with (c) because  
the proof requires the IFR to be the stationary 

wire. Also, (d) is not satisfied because the 

equation does not explain emf‟s.  

Four Postulates 

Suppose at time t  chargeq1 is at positionr0(t) 

and moving at velocityv0(t), all as measured in 

an arbitrary IFR0 Further supposeq1 emits a ray 
(i.e., an electric field over an arbitrarily small 

period of time) at time t which arrives at q2 at 

time t+Δt, all as measured in IFR0. Let IFR(t)be 
defined as a dynamic IFR so that the position 

and velocity of q1as measured in IFR(t)at time t 

are both zero. Assume the position and velocity 
of q2 when the ray arrives there at time=t+Δt are 

r(t+Δt)=r(t+Δt)u(t+Δt) and v(t+Δt), 

respectively, all as measured in IFR(t). Define 

E0 and f0 when the ray hits q2 at r(t+Δt) as the 
standard field and force values when q2 is 

permanently stationary with respect to q1 in 

IFR(t), as follows: 

(1.6.1)E0  =q1u(t+Δt)/[4πɛ0r
2
(t+Δt)] 

(1.6.2)f0   = E0q2=q1q2u(t+Δt)/[4πɛ0r
2
(t+Δt)] 

Four postulates concerning the movement of the 
electric field through space, its value, E, when it 

arrives at q2, and the force, f,it exerts on q2 are 

needed in this work. They are as follows: 

π1 :The electric field moves at  c with respect  to 

IFR(t).  

π2 :At the impact with q2, E = E0 

 π3 :At the impact with q2, f  is collinear with f0. 

π4 :At the impact with q2, if v(t+Δt) =0 then f 

=f0.  

It is argued all four postulates are intuitively 
reasonable. First, π1 is based on the proposition 

that fields move at c with respect to the source. 

Second, π2assumes the field emission at t 
fromq1, which is momentarily stationary in 

IFR(t), does not depend on its velocity before 

and after t, so that Coulomb‟s electric field law 

should apply. Third, it is assumed that the force 
on q2is in the direction of the field when it 

arrives, which is E0. Since f0=q2E0, then π3 is 

reasonable. Finally, if v(t+Δt) = 0 and E=E0, 
then the force should obey Coulomb‟s law, so 

that π4 is reasonable. 

Road Map 

In Part 2intuitive reasoning in a series of steps 
is employed which leads to(2.4.4). The problem 

with this formula is that it contains a constant ,α, 

which is undetermined. In Part 3 a formal proof 
is offered which shows the equation as derived 

in Part 2 is correct, with α=3/2. Then in Part 4it 

is shown this formula correctly explains the 
result of the double wire magnetic experiment, 

and similarly in Part 5 for the emf in asolenoid 

experiment. In both of these experiments it is 

shown that α=3/2. When this value of α is 
plugged into (2.4.4), the final result is obtained 

in (2.4.5). 

SOLUTION BASED  ON INTUITIVE METHODS 

Electric Field Law L1 

The intuitive analysis of the fundamental 

problem is based on two laws, L1 and L2, which 

are heavily dependent on the four postulates. 

The variables involved in L1 as given below 
have been previously defined in Part 1. This 

law is actually a restatement of π2in greater 

detail, which gives the electric field E(t+Δt) at 
its arrival at q2 at time t+Δt, as follows: 

Electric Field LawL1 

(2.1.1)E(t+Δt)  =q1u(t+Δt)/[4πɛ0r
2
(t+Δt)] 
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 Linear Force Law (L2) 

This section uses the terms already defined in 
Part 1 and lawL1. Suppose the ray emitted by 

q1at time t moves at velocity c in IFR(t)and 

arrives at q2 at timet+Δt with a value of 
E(t+Δt)as given by L1, where q2is at r(t+Δt)and 

moving at v(t+Δt), all as measured in IFR(t). In 

lawL2cited below the force f
+
, which is a linear 

approximation in v(t+Δt)/c, exerted by the field 
E(t +Δt )on q2 is as follows: 

Linear EM Force Law Approximation 

(2.2.1)f
+
=q2E(t +Δt )[ 1 – αv(t+Δt) cos(φ)/c ] 

The single + superscript indicates the law is of 

order O1(v/c). Later on f
++

will be used to 

indicate the second order solution. The scalar, 
v(t+Δt), is the relative velocity of q2 in IFR(t)at 

the arrival time, t+Δt, and φ is the angle between 

r(t+Δt) and v(t+Δt) at that instant. Thus, 

v(t+Δt)cos(φ) is the velocity of q2in the 
direction of r(t+Δt), which is the direction of the 

ray at the point of impact. It will be shown by 

three different analyses in Parts 3, 4, and 5 that 
the constant α is given as follows: 

(2.2.2)α = 3/2 

Note that the leading term, q2E(t+Δt), in (2.2.1) 
is the force on q2 postulated by π3ifv(t+Δt)=0 at 

the instant of impact. The term, 1-

αv(t+Δt)cos(φ)/c,  is less than unity when 

cos(φ)>0, which is when q2 is moving away 
from q1 at impact, and v.v. when it is moving 

toward q1.Intuitively, the idea goes something 

like this: Suppose a force generated by, say, a 
spring is exerted on an object moving away 

from it, so in this case cos(φ)>0. Then the force 

it will exert will be reduced, depending on the 

relative velocity of the object moving away 
from the spring (and v.v. if it is moving toward 

the spring).  

This force will be reduced from its normal value 

down to zero if the object and the spring are 

moving at the same velocity. Based on this 

thinking it is argued that(2.2.1)is intuitively 

reasonable in that it should be linearly valid 

when v/c is small for some positive value α. 

Also, it will be assumed here and proved in Part 

3 that f
 +

->0 when v(t+Δt)cos(φ)->c. 

 Further Analysis of the Linear Force Law 

In this section the linear force f
+
is examined in 

greater detail and re-written. Inserting 

E(t+Δt)from(2.1.1) into (2.2.1) yields: 

(2.3.1)f
+
= {q1u(t+Δt) /[4πɛ0r

2
(t+Δt)] } 

{q2 [1–α v(t+Δt) cos(φ)/c ]} 

The first expression in braces in (2.3.1)is the 

field at q2, and the second expression is the force 
this field exerts. It is instructive to simplify this 

equation. First, define Vas the component of 

v(t+Δt)in the direction of r(t+Δt), as follows: 

(2.3.2)V = v(t+Δt) cos(φ) 

Second, use the formula for f0 as given by 

(1.6.2). This results in the following alternate 
formula for the linear force: 

Alternate Formulation of the First Order Linear 

Solution 

(2.3.3)f
+
 =f0  (1 – αV/c) 

The force given by (2.3.1),and the equivalent 

value given by(2.3.3),clearly satisfy the 

fundamental requirements (a) and (b)in Section 
(1.5), but not necessarily (c) and (d).These 

requirements are resolved in Parts 4 and5, 

respectively. It is noted that an important and 
intuitively reasonable feature of (2.3.3)is that 

f
+
isco-linear withf0, which agrees with postulate 

π3.This is not the case with fIMP. 

The Fundamental Second-Order Solution 

As the values of V/care miniscule for the 

charges involved in the proofs in Parts 4 and 5,f 
+
 is used in both analyses. However, in devices 

such as linear accelerators where it is possible 

that V->c, a second order term must be added. 

Based on (2.3.3) the general form of the second 
order solution, f

++
, is given as follows: 

Fundamental Second Order Solution 

(2.4.1)f
++

(V/c ) = f0[1–α V/ c +λ V
2
/c

2
] 

From the discussion in Section 2.2, it is 
proposed that f

++
(V/c) ->0 when V->c. 

Therefore, the following is assumed: 

(2.4.2)f
++

(1) = 0 

From (2.4.1)and (2.4.2)it is clear that 1-

(α)(1)+(λ)(1)
2
=0, so that: 

(2.4.3)   λ=α – 1 

Thus, on inserting (2.4.3) into (2.4.1), the 
following obtains: 

Fundamental Second Order Solution with 

Unspecified α 

(2.4.4)  f
++

=f0  [1 –α V/ c +(α – 1) V
2 
/c

2
 ] 

Assuming for the moment that α=3/2, then 

(2.4.4) becomes: 

The Fundamental Second Order Solution with 

α=3/2 
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(2.4.5)f
++

 =f0[1–(3/2)V/c + (1/2) V
2
/c

2
] 

In (2.4.5)f++is the proposed final solution to the 
force problem. This solution is simple in 

appearance and satisfies requirements (a) and 

(b) as set forth in Section 1.5. The requirements 
concerning (c) and (d)will be satisfied by the 

linear analyses in Parts 4 and 5. In Part 3 the 

entire second order equation is derived, 
including the requirements that α=3/2 and 

λ=1/2.Unfortunately, none of these proofs are 

simple, especially those in Parts 4 and 5 where 

currents are involved. 

Concluding Comments on the Proposed 

Solution 

In conclusion, the EM force as given by 
f++in(2.4.4), in which the value of α is un 

resolved, was derived entirely by intuitive 

methods. Experimental evidence considered in 
Parts 4 and 5independently shows the linear part 

of this formula is correct, and that α=3/2. In Part 

3 the second order formula given by (2.4.5)is 

derived analytically, and it is shown that α=3/2 
and λ=1/2. It is concluded from this theory and 

the experimental validations of it that EM forces 

are entirely the result of electric fields. Magnetic 
forces are in reality electric field forces which 

are a result of a dynamic version of Coulomb‟s 

law, taking into consideration that fields travel 
at c with respect to the source and push against 

charges in a way that depends on relative 

velocities. As there can be an orthogonal 

component of the force with respect to the 
original line of sight, this is mistakenly viewed 

as a separate magnetic force. It is noted that the 

pushing force in (2.4.5)approaches zero when 
V->c, so that charges cannot be accelerated to 

the velocity of light. Very important, f++is 

independent of the user‟s fixed inertial frame of 
reference. This not the case with the implied 

classical solution, fIMP . 

A DERIVATION OF THE FUNDAMENTAL 

SOLUTION 

Introduction 

Theoretical evidence is provided here that the 

intuitively derived 

f
++

as given by(2.4.1)is correct, along with the 

requirements that 

α=3/2 and λ=1/2. This equation is re-written is 

slightly different format as follows; 

(3.1.1)f
++

/f0 =1–αV/c  + λV
2
/c

2 

The objective here will be to show (3.1.1) is 

valid and that α=3/2 and λ=1/2. Based on π3in 
Section 1.6, it is postulated that f0 and f

++
 are 

co-linear with the ray direction as given by 

r(t+Δt). Thus, it is perfectly general to conclude 
there exists a scalar function β, which satisfies 

the following: 

(3.1.2)f
++

/f0= (1 –β) 

The rationale for determining β is based on the 
following expression: 

(3.1.3)   1 –β= (1 - ɛ1) (1 -ɛ2)  

As it will be shown that ɛ1=V/c and ɛ2=(1/2)V/c, 
then this implies that: 

(3.1.4)f
++

/f0=1-β = [1- V/c] [1-(1/2)V/c]   

= 1 –(3/2)V/c +(1/2)V
2
/c

2
 

Since (3.1.4)agrees with the objective as given 

by (3.1.1), this completes the proof, along with 

the requirement that α=3/2 and  

λ=1/2. In the following sectionsɛ1 and ɛ2are 
determined. While the analysis determiningɛ1 is 

somewhat straightforward, this is not as all the 

case with ɛ2 . 

Reduction Factor ɛ1Due to Lost Momentum 

In this section it will be shown that ɛ1in (3.1.3) 

is given by ɛ1=V/c. Assume a given field 
Ehitsq2, and that the scalar force exerted on this 

charge isf0 when V=0, where V is given by 

(2.3.2). Since the electric field has energy, it is 

assumed this energy can be viewed as having a 
mass m per unit volume which is moving at 

velocity c in the direction of r(t+Δt) in IFR(t), 

and therefore moving at c-V with respect to q2. 
If the cross-sectional area of q2in the direction of 

Eis A, then the mass flowing into this charge 

and stopped by it in time Δt results in a scalar 

change, Δp, in momentum, which  is given as 
follows: 

(3.2.1)Δp=Am(c-V)Δt 

From the law of momentum, this change 
satisfies  

(3.2.2)Δp=fmΔt 

In (2.3.2)fm is the resultant force acting on the 

charge due to the momentum exchange. Thus, 

from (3.2.1) and (3.2.2) the following obtains: 

(3.2.3)fm=Am(c-V) 

If f0 is the scalar force exerted by the field when 

V=0, then from (3.2.3): 

(3.2.4)f0=Amc 



A Single Equation Solution to the Electromagnetic Force Problem 

Open Access Journal of Physics V2● 14 ● 2018                                                                                                5 

 Therefore, from (3.2.3) and (3.2.4): 

(3.2.5)fm/f0=(c-V)/c=1-V/c 

It is concluded that the fractional loss in force, 

call it ɛ1, due to the total possible momentum 

not being fully transferred is given as follows: 

(3.2.6)ɛ1=  V/c 

This result completes the analysis of ɛ1 

introduced in (3.1.3).  As ɛ1>0, this is an 

indication that the linear force arguments 
leading up to f

+ 
in Part 2have some merit. 

Reduction Factor ɛ2 Due to the Reduced 

Field Density 

In this section it will be shown by somewhat 

complicate methodology that ɛ2=(1/2)V/c in 

(3.1.3).The proof employs the following thought 

experiment: Consider a long railroad track lined 

end to end with cars of arbitrary length L which 

move to the right at velocity v. A never-ending 

constant electric field moving at velocity c with 

respect to the fixed track travels through the 

cars, and inside each car is a continuous array of 

charges which move with it. Therefore, in this 

experiment φ=0, cos(φ)=1, and V=v. It is argued 

that setting φ=0 is not an important limitation 

since V is the only component of v that matters. 

Further assume that a fixed section of track 

running from x=0 to x=L is marked off, and a 

car is totally inside that section at t=0. Next, 

define a block of the field of length L, and 

consider what happens during one cycle when 

the right edge of the block moves from x=0 at 

t=0 to x=Latt=L/c=T. At t=T the block is 

squarely inside the track section. FromL1 and L2 

the relative velocity of any given field block 

with respect to the interior of any given car is c-

V. What happens when the block travels a 

distance Lon the fixed track section will now be 

examined. Figure 1 below is used to explain the 

theory. 

 

Figure1. Showing Field Utilization as an Area 

The analysis in this section makes use of the 

concept of field utilization, U(V), which is 

shown as the area in the shaded region in Figure 

1above and is defined as follows: 

(3.3.1)U(V) = 
𝑳

𝟎
Δt(x) dx 

In (3.3.1)Δt(x) is the total time at a fixed track 
position x that the car is present during the 

cyclic time interval, T, where T=L/c. It is noted 

there is no force at the fixed track position x if 
the car is not present, and that the car is not 

always present when 0≤t≤VT.  If the car is not 

moving, then 

Δt(x)=T and U(0)=LT=cT
2
.However, from 

Figure 1 it is seen that the amount of time the 

car is present, as a function of x, is represented 

by the line OP1P2. For 0≤x≤VT the value of 
Δt(x) is linearly increasing in x, starting atx=0 

and ending at x=VT. For x≥VT the car is always 

present during the cycle. From (3.3.1)U(V) is 
therefore calculated as the total area minus the 

triangular area given by the closed line,OTP1O.  

Since L=cT, then: 

(3.3.2)U(V) = LT– (1/2) VT
2
= ( c– V/2)T

2
 

Since U(0)=cT
2
, then(3.3.2) can be re-written as: 

(3.3.3)U(V)/U(0) = 1 – (1/2) V/c 

As it is argued that U(V)/U(0)is the fractional 
force multiplier due the fact that the car not 

present on the fixed track section for the entire 

passage time of the field block. During the 
absence time, no force is exerted in this section.  

Calling the lost force factor ɛ2, then from 

(3.3.3): 

(3.3.4)ɛ2 =(1/2) V/c 

Conclusion 

From (3.3.4) and (3.2.6) it is concluded that 

(3.4.1)  (1 - ɛ1) (1 -ɛ2) =  1 – (3/2)V/c  
+(1/2)V

2
/c

2
 

As (3.4.1) agrees with the objective given by 

(3.1.4), this proves that f
++

as given by (2.4.5) is 
valid, where α=3/2 and λ=1/2.Q.E.D. 

CURRENTS IN PARALLEL WIRES 

First Step in Deriving the2-Wire Law  

In this part the fundamental force law, f
++

, as 

given by (2.4.1) will be employed to explain the 

outcome of the double-wire magnetic force 
experiment, which has been noted to obey the 

Biot-Savart[1] magnetic law. As electron drift 

velocities are miniscule compared to c, it will 
turn out that all the velocities in the analysis will 
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have negligible V/c values. Thus, f
+
 in as given 

by (2.3.1) will be used instead of f
++

. It will be 
shown that f

+
 explains the results of the 

experiment, and that α=3/2.  

The experiment involves sending constant 
currents, I1 and I2, down two parallel wires 

which are separated by a distance D. In Figure 

2 below the currents I1 and I2 are both moving to 

the left, so that the free electrons flow to the 
right. The positive charges are assumed to be 

stationary and equal in number to the free 

electrons.  

 

Figure2. Biot/Savart Two-Wire Experiment  

The Biot-Savart  (BS) law applied to this 

problem states that the scalar attractive force fBS 

exerted by wire #1 on a unit length of wire #2 is: 

(4.1.1)fBS=  [μ0 / (4π) ] [ 2 I1I2  /D ] 

If the currents shown in Figure 2 are in opposite 

directions, then fBS<0 and the force is repulsive. 
As fBS in (4.1.1)is symmetric in I1 and I2, no 

distinction is made in the equation whether the 

force is exerted by wire 1 on wire 2 or v.v. In a 
typical BS experiment the current forms a 

closed loop withI1= -I2, so in this case the scalar 

force is repulsive and (4.1.1) reduces to the 
following, where I=|I1|: 

(4.1.2)f =- [ μ0 / (4π) ] [ 2I
2
/D ] 

The objective here in will be to show 

that(4.1.1)can be derived from f
+
 as given by 

(2.3.1).The method used will be to consider all 

the rays from the upper wire #1 which arrive at 

an arbitrary fixed point Bas shown in Figure 2 
at t=0. If x1 and x2 are distances measured on the 

upper and lower wires, respectively, let x2=0 at 

point B. Of interest is the total force exerted by 

the rays emitted from all the dx1 segments of 
wire #1which arrive at a differential element dx2 

at point B at t=0. By necessity these rays are 

emitted at different times. Unless specifically 
stated otherwise, the IFR will be taken with 

respect to the wire. Note first that for any wire 

with current I the total amount of charge, dq, 
contained in a line segment, dx, is given by: 

(4.1.3) dq=Idt=I(dx/v) 

where dt is the passage time of the current along 
line segment dx, and v is the drift velocity of the 

charges in that segment at that instant. In the 

case shown in Figure 2both currents are moving 
to the left and both x‟s are increasing to the 

right, which is the direction of the electron flow. 

Now consider dq1 at point A and dq2 at B, where 

these are the charges contained in dx1 and dx2, 
respectively. In general, these charges may be 

positive or negative. However, in the special 

case studied first it is assumeddq1 is a negative 
charge moving to the right (opposite to the 

current I1) at an average velocity v1 and dq2 is a 

stationary positive charge(v2=0). This case will 
be labeled “MP”, indicating the ray moves from 

a Minus charge in the top wire to a Plus charge 

in the bottom wire. The other cases to be 

considered are PM, MM, and PP. They are 
easily solved once the MP problem is resolved. 

According to L1 the dq1 charge moving to the 

right at average velocity v1isconsidered to be at 
rest, so that the relative movement of dq2is to 

the left at relative velocity v1(not v2).Thus, the 

ray from A hits x2=0 at some point G, as shown 

in the figure, where G is the future position of B 
at the time of impact (i.e., at t=0).The vector 

from A to G is shown as R=ctu, where t is the 

travel time and u is the unit vector along the line 
of sight at impact. The initial line of sight when 

the ray is emitted is shown as r in Figure 2, 

which is at an angle θ to the bottom wire. 
However, at impact the ray hits the bottom wire 

at an angle φ. It is seen from the figure that: 

(4.1.4)φ = θ–δ 

As has previously been described, the situation 
is similar to a fighter pilot shooting at a moving 

target, where in this case the actual length R of 

the shot turns out to be different from the 
original line-of-sight lengthr. From f Lthe 

differential force, dfMP, exerted by dq1 on dq2in 

the direction of the line AG(i.e.,u)in the MP 
case is: 

(4.1.5)dfMP=  [dq1dq2/ (4πɛ0R
2
)]  [1- α(v1/c) 

cos(φ)] 

Note that it will turn out that the experimental 
data for this complicated problem involving a 

virtual infinity of moving charges will require 

that 

α=3/2.It is reiterated that the relative velocity of 

the positive charge at point B, as viewed in the 

IFR of dq1, is moving to the left at velocity v1 . 

The angle between u and this relative velocity is 
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φ, as shown in Figure 2. As φ<π/2in the case 

shown, then[1-α(v1/c)cos(φ)]<1.Thus, there is an 
L2force reduction when φ<π/2. As 

dq1isnegative, the force as given in (4.1.5)is 

repellent and has an upward component. This is 
in agreement with the fact that the negative dq1 

charge attracts the positivedq2charge.If dFMP is 

defined as the upward component of dfMP, then 

from (4.1.5): 

(4.1.6)dFMP=[dq1dq2/ (4πɛ0R
2
)]  

 [1- (αv1/c) cos(φ)] sin(-φ)dq2 

For the case shown in the figure, sin(-φ)≥0, 
cos(φ)≥0, and dq1<0, so that dFMP>0. The first 

expression in (4.1.6)is the magnitude of the 

Coulomb electric field given by L1directed 
along the line of sight from point A to the 

eventual point of impact, which is at a distance 

v1tto the left at G, relative to the IFR of the 

moving charge q1.The term given by[1-(αv1/c) 
cos(φ)] is the force multiplier factor covered by 

L2. The sin(-φ) term is used to obtain the 

upward force component of the electric field, 
and dq2 is used to convert the electric field to a 

force. As sin(-φ)= - sin(φ),  then 

(4.1.6)becomes: 

(4.1.7)dFMP = -[dq1dq2/ (4πɛ0R
2
)] 

[1- α(v1/c) cos(φ)] sin(φ) 

In the MP case the total upward force FMP per 

unit of length along the lower wireis found 
from(4.1.7)by suitably integratingdq1over the 

entire upper wire and dq2 over a unit 

distance,Δx2=1. Thus, in general terms, without 
specifying the limits on the integrals: 

(4.1.8)FMP =-∫∫[dq1dq2/ (4πɛ0R
2
)] [1-α(v1/c) 

cos(φ)] sin(φ) 

As all the dq2‟s along the lower wire have the 
same upward force exerted on them, the 

contribution to FMP from the dq2portion of the 

integration is found by replacingdq2withthe total 
Δq2 charge along a length of Δx2=1. From 

(4.1.1)Δq=I2Δt, where Δt=Δx2/v=1/v. In this 

case the velocity of the upper negative charge is 
v1. Thus, the relative velocity of the stationary 

lower positive charge, with respect to the upper 

charge, is v=v1. Therefore: 

(4.1.9)Δq2= I2|Δx2|/v= I2/v1 

Inserting (4.1.9)into (4.1.8) and neglecting the 

limits yields the following: 

(4.1.10)FMP=-[I2/(4πɛ0v1)]  dq1sin(φ)[1-

α(v1/c) cos(φ)]/R
2 

It is convenient to use x as the general position 

indicator for both wires, where x=0 at B, and to 
integrate with respect to x. Then, from (4.1.10): 

(4.1.11)FMP=-[I2/(4πɛ0v1)] 

 
∞

−∞
dx[dq1/dx]sin(φ)[1-α(v1/c)cos(φ)]/R

2 

From (4.1.2) it is noted that dq1/dx= I1/v1. 

Thus,(4.1.11)becomes: 

(4.1.12)FMP = - [I1I2/(4πɛ0v1
2
)] 

 
∞

−∞
dx  sin(φ)  [1- α(v1/c) cos(φ)]/R

2
 

Since x=r cos(θ) and D/r=sin(θ), then x=Dctn(θ) 

and 

dx = -[D/ sin
2
(θ) ]dθ. As the integral given by 

(4.1.12) involves  

-∞≤x≤∞, this implies π≤θ≤0. Accordingly, on 
inverting the upper and lower limits so that 

0≤θ≤π,and noting that D/R=sin(φ), (4.1.12)can 

be rewritten as:
 

(4.1.13)FMP = [I1I2/(4πɛ0v1
2
D)] 

 𝑑
𝛑

0
θsin

3
(φ)[1-α(v1/c) cos (φ)]/sin

2
(θ) 

From (4.1.13) it is seen that FMP>0, which is 

correct since the MP force is attractive. In the 
next section FMP will be evaluated from 

(4.1.13). Then from this analysis it will be a 

simple matter to find the total scalar Biot-Savart 
upward force, FBS, as given by (4.1.1). 

Evaluation of FMP Given by (4.1.13) 

In this section the scalar FMPwill be evaluated 

from (4.1.13).  To this end it is convenient to 
define K1 and K2 as follows: 

(4.2.1)K1 = [I1I2/(4πɛ0v1
2
D)] 

(4.2.2)K2 = sin
3
(φ) [1- αz1 cos(φ)] / sin

2
(θ) 

Where 

(4.2.3)z1=v1/c 

Inserting (4.2.1) and (4.2.2) into (4.1.13) yields: 

(4.2.4)FMP = K1 
𝛑

0
K2dθ 

Note from (4.1.4) that φ = θ – δ. Thus, from 

(4.2.2): 

(4.2.5)K2 = sin
3
(θ – δ) [1- αz1 cos(θ – δ)] / 

sin
2
(θ) 

From (4.2.2) and (4.2.3) it is seen that K2 is a 

dimensionless quantity. Accordingly, the 
integral in (4.2.4) is a routine mathematical 

problem which is evaluated in Appendix 1. The 

result is: 



A Single Equation Solution to the Electromagnetic Force Problem 

8                                                                                                Open Access Journal of Physics V2● 14 ● 2018    

(4.2.6)FMP = K1 (2 + z1
2
) 

Replacing z1byv1/c and K1 by  [I1I2/(4πɛ0v1
2
D)] 

in (4.2.6)yields: 

(4.2.7)FMP = [ I1I2/(4πɛ0v1
2
D) ][ 2 + v1

2
/c

2
] 

This is the final result for FMP. It will be used in 

the next section. 

Total Force per Unit of Length 

It is noted that FMPis the total upward force per 

unit of length along the lower wire due to the 

MP charges. The total upward scalar force Ftot 

per unit length of the lower wire is:   

(4.3.1) Ftot=FMP + FPM + FMM + FPP 

FPM is the force per unit of length along the 

lower wire created by a stationary positive 

charges in the upper wire acting on negative 

charges in the lower wire moving to the 

right(see Figure 2) with velocity v2. The 

analysis of this problem is virtually identical to 

the FMP problem. Instead of point G being 

marked off to the left of B at a distance v1t, G* 

is marked off to the right of B at a distance v2t*. 

If the figure is viewed from the reverse side, the 

problem is identical to the FMP case, except the 

roles of v1 and v2 are reversed. Thus, from 

(4.2.7)and on reversing v1 and v2 : 

(4.3.2)FPM = [ I1I2/(4πɛ0v2
2
D) ] [ 2 + v2

2
/c

2
 ] 

Next, note that both FMM and FPP involve 

charges which are stationary with respect to 

each other. Therefore, in this case there is no 

v1
2
/c

2
 term in (4.2.7) and no v2

2
/c

2
 term in 

(4.3.2). As the forces are repulsive, then: 

(4.3.3)FMM = FPP = -2 I1I2/(4πɛ0v1v2D)  

Accordingly, the result given by (4.3.1) is, after 

a little algebra: 

(4.3.4)Ftot =2 [I1I2/(4πɛ0Dc
2
)]  

This result is somewhat similar to the Biot-

Savart formula given by (4.1.1). In the next 

section it will be shown that (4.3.4) is in fact 

this formula.  

Note that in the special case where the same 

current flows around a loop, thenI2= - I1. In this 

situation, define I=|I1| . The following formula 

therefore obtains for the scalar force, f : 

(4.3.5)f= - 2 I
2
/ (4πɛ0Dc

2
) 

As f<0, the force given by (4.3.5) is repulsive. 

Conclusion of Proof and Finding Maxwell’s c 

It is contended that Ftotas given by (4.3.4) and 

fBS as given by (4.1.4) are equal forces. It is seen 

this will be the case if c satisfies the following: 

(4.4.1)c = 1 /√ (ɛ0μ0) 

As (4.4.1) has been experimentally verified, 

then Ftot=fBS and there fore the linear solution 

given by f
+ 

correctly explains the Biot-Savart 

magnetic force law as applied to the double wire 

experiment. As a bonus, Maxwell‟s formula for 

the velocity of light is also a bi-product. Q.E.D. 

It is interesting that the formula for c as given 
by (4.4.1)was arrived at by Maxwell using 

classical EM theory, in spite of the fact that 

f
++

indicates magnetic forces are actually electric 
field forces. However, since the definition of the 

ampere and μ0areintertwinedby the results of the 

parallel wire experiment when I1= - I2,it turns 

out that μ0 can be set arbitrarily, which actually 
is the case. Thus, (4.4.1) is meaningful even 

though magnetic forces do not exist. 

Comment on the Absence of Drift Velocities 

in the Formula 

It is strange that drift velocities play no role in 

the formula for the repulsive force in the double 
wire experiment, even though magnetic forces 

as given by classical theory and the forces 

postulated in this work should presumably 

depend on them. Out of curiosity my colleague, 
David Banks, and I performed a series of 

experiments to see if the repulsive force was 

indeed independent of the two drift velocities. 
These experiments maintained I1=-I2 and then 

compared the repulsive force whenv1=v2 with 

situations where v1≠v2, keeping all the other 
variables the same. We found the repulsive 

forces were in fact independent of the drift 

velocities. 

 FARADAY’S LAW  

Introduction 

In Part 4 the linear solution, f
+
, with the 

requirement that α=3/2, was shown to explain 
the magnetic force in the parallel wire 

experiment. In this analysis f
+ 

will also be 

shown by a somewhat involved mathematical 

analysis that it also explains Faraday‟s law 
concerning emf„s. The problem, once again, is 

that there is a virtual infinity of charges in 

currents, and f
+
 is a law which concerns them 

only in pairs. As it is argued the primary 

application of Faraday‟s law involves circular 

currents, then emf‟s will be investigated only in 
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this situation. Specifically, the current in a 

solenoid will be singled out. Attention is drawn 
to Figure 3 below, which depicts two rings in a 

circular coil of radius r. The two rings shown 

are separated in height by a distance of Z, which 
is the length of the line P1P2. Not shown is the 

total length ℒ, which is assumed to be 

sufficiently large that the conditions at the ends 

may be neglected (as is the case with the 
Faraday‟s law calculations for coils). The 

solenoid has n rings/meter, and it will be 

approximated by an infinite number of 

“differential rings”, in which there are ndZrings 
in a vertical height dZ. The lower ring depicted 

centered at P0is assumed to be at the center of 

the coil length. Ultimately, the circular force on 
this ring at P1 will be ascertained, which will in 

turn lead to a calculation of the emf. As a 

continuous charge model will be employed 

concerning the ring current, there is a problem 
using laws L1 and L2 in that the electric forces 

approach infinity when nearby charges are 

considered. The technique used to circumvent 
this problem is to consider the force at P4 in 

Figure3 below, where P4is at X=Xi and X->0. 

Suppose this force turns out to be proportional 
to X. Then the force at the ring at P1 is found by 

extrapolating by setting X=1. From Faraday‟s 

law the emf (call it K*) satisfies: 

(5.1.1)K* = emf = - n
2
μ0ℒAdI/dt 

Where  A=πr
2
.Figure 3 is as follows: 

 

Figure3. Solenoid used in faraday analysis  

It is reiterated that certain approximations are 

made in deriving (5.1.1) from Faraday‟s law, 
one of which is neglecting the difficulties 

arising near the ends of the solenoid. In using L1 

and L2 to derive the emf, somewhat similar 

approximations are made. Chiefly among these 
are (a) assuming a small Xas discussed above, 

(b) neglecting higher order terms in v/c, and (c) 

only examining the emf at the half-way point in 

the solenoid. 

Drift Velocity and Current 

The solenoid shown in Figure 3 consists of 

rings where the angle θ is measured with respect 
to arbitrary point P1. The vertical distance Z is 

measured upward from P1. The line P1P2extends 

vertically from the lower ring to the upper ring. 

From the figure: 

(5.2.1)r(θ)= r [i cos(θ) + jsin(θ) ] 

It is reiterated that approximation signs are 

omitted in this work when higher order terms 
are eliminated. Now, letV(θ,Z,t) be the drift 

velocity at time tat an arbitrary pointon a ring 

defined by (θ,Z).DefineV0=V(0,0,0)as the drift 
velocity at  P1 att=0. It is assumed the drift 

velocity is very small and both it and the current 

are the same everywhere in the solenoid. Thus, 

it is assumed that V(θ,Z,t)=V(0,0,t), so that 

(5.2.2)V(θ,Z,t)= V(0,0,t)  [ -isin(θ)+ jcos(θ) ] 

The following linear approximation is made 

concerning in(5.2.2): 

(5.2.3)V(0,0,t) = V0 (1+at) 

Also, if I(θ,Z,t) is the current and if I0 is defined 

as I0=I(0,0,0), then on assuming the current is 
proportional to the drift velocity: 

(5.2.4)I(θ,Z,t) = I0V/V0 = I0 (1+at)  

Evaluating Certain Variables Used in Section 

5.4 

In this section certain important variables will 

be defined and evaluated which will ultimately 

play a role in Section5.4. From Figure 3 the 
vector H runs from point P3 to Xat P4. It is seen 

that H+(r-X)+Zk=0, where r is given by (5.2.1). 

Thus: 

(5.3.1)H = i [X - rcos(θ)] – jrsin(θ) – kZ 

Normalizing all variables in (5.3.1)by dividing 

by r yields 

(5.3.2)h= H/r = i(x-cos(θ)) + jsin(θ) –kz 

where x=X/randz=Z/r. From (5.3.2)h
2
=(x-

cos(θ))
2
+sin(θ)

2
+1+z

2
. Thus: 

(5.3.3)h
2
 = 1 + x

2
 – 2 xcos(θ) + z

2
 

Note that V is tangent to the upper ring at point 

P3in Figure 3. Therefore, from law L1 the 

relative movement of a stationary test charge Q 
at P4 is –V. Now suppose the ray emitted at 

point P3 travels along the vector Gand arrives at 

P5 at time=0.  SinceP5 is at Xi-VΔt, then from 

(5.3.1): 
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(5.3.4)G =H - VΔt =  i(X –rcos(θ)) – jrsin(θ) – 

kZ – VΔt 

Dividing the terms in (5.3.4) by r yields: 

(5.3.5)g=G/r=[x–cos(θ)+(VΔt/r)sin(θ)]i –

[sin(θ)+(VΔt/r)cos(θ)] j–zk 

After a little algebra, (5.3.5) implies the 

following: 

(5.3.6)g
2
=1+x

2
-2xcos(θ)+z

2
+ 

(VΔt/r)
2
+2x(VΔt/r)sin(θ)

 

From (5.3.6) and (5.3.3): 

(5.3.7)g
2
 – h

2
 = (VΔt/r)

2
+ 2x(VΔt/r) sin(θ) 

From Figure 3 and the law of cosines, H
2
is 

given as follows: 

(5.3.8)H
2
 = G

2
 + (VΔt)

2
 – 2(VΔt)Gcos(φ) 

Solving (5.3.8) for cos(φ)  yields 

(5.3.9)cos(φ) = [G
2
 –H

2
 + ( VΔt )

2
 ] / [2 GVΔt] 

Dividing the both numerator and denominator in 

(5.3.9) by r
2
 yields: 

(5.3.10)cos(φ) = [g
2
 –h

2
 + ( VΔt /r )

2
 ] / [2 g 

(VΔt/r) ] 

Inserting (5.3.7) into (5.3.10) yields, after a little 

algebra: 

(5.3.11)cos(φ) = [xsin(θ) +VΔt/r ] / g 

Dropping the O1 term in (5.3.11)  yields 

(5.3.12)cos(φ) = xsin(θ)/g 

Finally, if x grows small, theng->h and h-
>(1+z

2
)

1/2
. Thus, from (5.3.12): 

(5.3.13)cos(φ) = xsin(θ)/(1+z
2
)

1/2
 

Note from (5.4.2) that dq at P3 is given by 

(5.3.14)dq = (dq/dt) (dt/dx) rdθ = Irdθ/V 

Since atP3 at time= -Δtthe current is I0(1-aΔt) 

and V=V0(1-aΔt),  then 

(5.3.15)dq= I0(1–aΔt)rdθ/[V0(1–aΔt)] = I0 rdθ/V0 

Equation (5.3.15) is the primary result of this 

section. 

Derivation of the Force at P4 

In this section the force F at pointP4shown in 

Figure 3(i.e., at X=Xi)due to the current in the 

particular coil will be determined, where X->0. 

Also, in the final analysis, only the force 

orthogonal to the radius at P4will ultimately 

enter into the calculation for the solenoid emf. 

As it is in the j direction at Xi in the figure, this 

force component will be called Fj. The 

calculations will consider all the rays from the 

entire solenoidhitting at P4 at time=0. A typical 

emission point is shown in Figure 3asP3. If 

IFR(0) is the IFR with respect to the current 

velocity at time=0 at point P3 and it is labeled 

IFR(P3), the ray from P3 moves toP5, which is 

the future position of  P4lying along the vector 

G, as shown in the figure. The passage time, Δt, 

and the other variables shown have all been 

found in Section 5.3. In a manner similar to 

Part 4 the analysis finds F=FMP+FPP, where 

FMP and FPP are the vector forces on a positive 

test charge Q at P4 (i.e., at X). FMP is the force 

on Q due to the minus charges moving through 

the arc given by rdθ at P3.Conversely,FPP is the 

force due to the positive stationary charges 

situated there. From laws L1 and L2, FMP is 

given as follows: 

(5.4.1)FMP=[Q/(4πɛ0)] 𝑛𝑑𝑍
ℒ

2

−
ℒ

2

 

 
2π

0
dθ(dq/dθ)(G/G

3
)[1-(αV/c) cos(φ)] 

The terms in (5.4.1)given by 

[Q/(4πɛ0)](G/G
3
)[1-(α V/c)cos(φ)] represent the 

force on the test charge Q at P5 in IFR(P3) due 

to the moving charges at P3. The amount of 

charge at P3in the interval covered by dθ is 

(dq/dθ)dθ. From(5.3.15), dq=I0rdθ/V0. Rather 

than summing over the nℒ individual rings in 

(5.4.1), an approximation is made which 

assumes there are ndZ rings in the interval 

between Z and Z+dZ. Setting 1/ɛ0=μ0c
2
, 

Z=rz,G=rg and approximating ℒ /2 with ∞yields 

the following: 

(5.4.2)FMP = [Qμ0nc
2
I0/(4π)] 

 𝑑𝑧
∞

−∞
 
2π

0
dθ(g/g

3
) [1-(αV/c)cos(φ)]/V0 

Since X->0, then g->h->√(1+z
2
). Also, Δt->hr/c, 

V->V0(1-ahr/c), and cos(φ)->xsin(θ)/h. Then 

[1-(α/c)Vcos(φ)]=[1-(α/c)V0(1-ahr/c)x sin(θ)/h]. 

In turn, this expression can be re-written as[1-

αV0/c+αaV0rxsin(θ)/c
2
]. Thus,(5.4.2) can be re-

written as 

(5.4.3)FMP=[Qμ0nc
2
I0/4π]  𝑑𝑧

∞

−∞
 
2π

0
dθ(g/g

3
) 

[1-αV0/c+αaV0rxsin(θ)/c
2
]/V0 

Note that FPP can be found from (5.4.3) by 

replacing g with –g and setting a=0.The result is 

as follows: 
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(5.4.4)FPP =- [Qμ0nc
2
I0/(4π)] 

 𝑑𝑧
∞

−∞
 
2π

0
dθ[g/g

3
] [1-αV0/c)]/V0 

As the total vector force, F, satisfies 

F=FMP+FPP, and asg=h=(1+z
2
)

1/2
, then from 

(5.4.3) and (5.4.4): 

(5.4.5)F=[Qμ0nc
2
I0/(4π)] 𝑑

∞

−∞
z 𝑑

2π

0
θ(g/g

3
)αarx

sin(θ)/c
2
 

As gj-> -sin(θ) and g->h->(1+z
2
)

1/2
, then from 

(5.4.5) and a little algebra the scalar component 

Fj can be found as follows: 

(5.4.6)Fj=[Qμ0nI0arxα/(4π)] 𝑑
∞

−∞
z/(1+z

2
)

3/2
 𝑑
2π

0

θsin(θ)
2
 

The two integrations in (5.4.6)are routinely 

found as 2 and π, respectively. Thus, Fj in 
(5.4.6) becomes: 

(5.4.7)Fj=  -Qnμ0(I0a) rxα/ 2 

Finding the Solenoid emf from Fj 

As the point P1 in Figure 3 is arbitrary, 
choosing any other point, say P3, as the basis of 

measuring θ would be equally valid. Thus, Fj is 

the orthogonal force all the way around the 
lower ring. The emf (call it K) due to the 

moving charges can therefore be found as 

follows: 

(5.5.1)K = (2πr)(nℒ )(Fj/Q) = - n
2
μ0ℒ  (I0a) xαπr

2
 

As I0a=dI/dt and the ring area is A=πr
2
, then 

from (5.5.1): 

(5.5.2)K = - n
2
μ0 ℒ AαdI/dt 

From (5.1.1)K*=emf =- n
2
μ0ℒ AdI/dt. Thus, 

from (5.5.2): 

(5.5.3)K=  αK* = (3/ 2) K* 

Note that αin (5.5.3) has been set at 3/2, in 

keeping with the results of Parts 3 and 4. This 

value will be assumed here, and it will be 

investigated as to where it leads. From (5.5.3) it 
is seen that the effect of the force due to the 

current contributes more to the emf than is 

measured by experiment. The reason for this is 
that there is a time-varying field present in the 

solenoid which creates the current. Assume the 

field across the particular coil at the time 
considered in the analysis (i.e, at time=0) is E. 

Let D be the total distance around the entire coil 

(i.e., D=2πrnℒ ) and d be the distance to an 

arbitrary point along this path. The scalar field, 
E(d), linearly decreases from E to 0 as d runs 

from 0 to D. The average scalar value of the 

field is therefore E/2. Thus, there is an energy 

gain of K*/2 in moving a sample charge from 

d=0 to d=D. This gain must be subtracted from 
the value of K found in (5.5.3)and(5.1.1). Thus, 

(5.5.4)  emf = K - K*/2 = (3/2) K* - K* = - 

n
2
μ0ℒ A(dI/dt) 

Equation (5.5.4) completes the proof that 

Faraday‟s law as applied to a solenoid is 

predicted by f
  +

, where in this case α=3/2.  

Q.E.D. 

RESULTS AND CONCLUSIONS 

It is argued in this work that EM laws 
concerning currents are not fundamental. These 

laws are relationships found from experiments, 

and they should be derivable from a single 

fundamental law which gives the force, f
++

, that 
a single moving charge q1 exerts on a single 

moving charge q2 .In actual practice reverse 

engineering is employed to infer a classical 
solution to this two charge problem, and it is 

shown this solution is unsatisfactory. The 

proposed solution offered in this work has 
several important features, as follows:   

 it is independent of the user‟s fixed inertial 

frame of reference 

 it is experimentally verified in a magnetic 

experiment 

 it is experimentally verified in an emf 

experiment 

 except for the value of α, it can be intuitively 

derived  

 it is satisfied by a theoretical proof  

 f
++

 ->0whenV->c 

The most important finding in this work is that f 
++

is entirely due to electric fields; magnetic 
forces do not exist, per se. Since a ray 

emanating from q1 hits q2 at a later time, there 

can be a force component which is orthogonal to 
the original line of sight that has nothing to do 

with a special magnetic force. Though 

Maxwell‟s equations concerning EM forces and 

his formula for c are viewed as example 
problems, they are nevertheless very useful 

analytical tools. 

APPENDIX A – FMP PROOF 

In this appendix the integral portion of (4.2.4) 
will be evaluated. From Figure 2 and L1 it is 

seen that R=ct, where t is the passage time of the 

light ray from point A to G (where G is the 
future position of point B in the IFR of the 

moving electron at A). The distance moved by 
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the positive charge during t is v1t, as shown by 

the line BG in the figure. For notational 
convenience equality signs are used rather than 

approximation signs in equations after the O3(z1) 

terms have been omitted. As δ is small, then 
sin(δ) and cos(δ) are approximated by sin(δ)=δ 

and cos(δ)=1–δ
2
/2. Note from the figure that h is 

the distance along the line BP, which is 

orthogonal to AG. Then, on dropping higher 
order terms in δ, h is evaluated as 

h=r sin(δ)=D sin(δ)/sin(θ)=Dδ/sin(θ). Also, 

h=v1tsin(φ)=v1tsin(θ δ).Thus,Dδ/sin(θ)=v1tsin(θ–
δ), and therefore t=Dδ/ [v1sin(θ) sin(θ–δ) ].Also 

from Figure 2 it is seen that ct sin(φ)=D. Thus, 

δ=(v1/c) sin(θ)=z1 sin(θ). Note from 
trigonometry thatsin(θ–δ)=sin(θ)cos(δ)-cos(θ) 

sin(δ). Also, 

cos(θ–δ)=cos(θ) cos(δ)+sin(θ) sin(δ)and  

sin(θ–δ)=(1-δ
2
/2)sin(θ)– z1 sin(θ )cos(θ).  

Then after all approximation signs have been 

dropped,  

cos(θ–δ)=(1-δ
2
/2)cos(θ)+δsin(θ).From (4.2.5) 

K2= sin
3
(θ –δ) [1-αz1 cos(θ –δ)]/ sin

2
(θ). Thus, 

K2={(1-δ
2
/2)sin(θ) 

z1sin(θ)cos(θ)}
3
.Sinceδ=z1sin(θ), then factoring 

sin(θ) in the first braces inthis equation for 
K2yields 

K2 =sin(θ) {1- z1
2
sin

2
/2–z1 cos}

3
 

{1-αz1[(1-δ
2
/2)cos(θ )+z1 sin(θ)

2
]}. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This equation is of the following form: 

(A.1)K2 = sin(θ) β1 β2 

where β1 andβ2  are (after dropping the O2terms 

in δ): 

β1 ={1- z1
2
sin(θ)

2
/2–z1 cos(θ )}

3
 and 

β2  ={1-αz1cos(θ)-αz1
2
 sin(θ)

2
}. 

Expanding the β1cubic  yields, after eliminating 

the O3 terms in z1, 

β1=1-3z1cos(θ)–3z1
2
sin(θ)

2
/2+3z1

2
cos(θ)

2
. 

After eliminating higher order terms,β1β2  

becomes 

(A.2)β1β2  = 1 –αz1cos(θ)  –αz1
2
sin(θ)

2
– 3z1 

cos(θ)  +  3αz1
2
cos(θ)

2
 – 3z1

2
sin(θ)

2
/2 + 

3z1
2
cos(θ)

2
 

Note from from (4.2.4)and (A.1)that 

(A.3)FMP=K1 
𝛑

0
sin(θ)β1βdθ 

Since α=3/2, the integration in (A.3)routinely 

yields (after eliminating the O3 terms):  

(A.4)FMP = K1 [ 2 + z1
2
]  

This is the result used in Section 4.2.  Q.E.D. 
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